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Table 1. Values of II and the maximum error of the heat Table I. PredIctions of heat transfer from the correlation 
transfer correlation equation over the whole range ofvelocity coincide satisfactorily with the numerical results, as indicated 

ratio in this table. 

Value?, or II 

0.76 
0.x4 
0.97 
1.02 

Maximum 
error (“t(,) 

5.1 
6.5 
5.3 
I .4 

4. CONCLUSIONS 

This papel- studied the general convection problem of a 
continuous moving surface in a llowing lluid by introducing 
novel transformation variables and parameters of velocity 
ratio. For the case of a plane surface moving in parallel to a 
free stream, very accurate similarity solutions and correlation 
equations for predicting the wall friction and heat transfer 
rate have been obtained Ihr any ratio of surface \elocit! and 
[I-CC stream v&city over the range of 0.01 < Pr < 10000. 
The cast of a surface moving in the rcvcrse drrectlon of the 
free stream has also been analyzed. Velocity and tcmperatul-c 
profiles have been presented to show thccfl’ccts oflhc relati\c 
motion of the plane surface and the f~-cc stream. The 
dcvclopcd analysis method can be applied to the miucd 
convection problems and many others. 

For the case of a reverse moving surface, FIB. 4(b) shows 
that /VII:&‘, ’ decreases as < increases. The decrease of the 
Nusselt number is due to the back flow or hot fluid from the 
down-stream. 

3.4. C‘orr&lio,l l~~~Ucrli0,l.S of hccr, Ircltl.~~ci 
A correlation equation of the local Nusselt number for 

any velocity ratio is developed as 

This correlation can be rewritten as 

where Nu,,i(tuRc,) ’ ’ for the special case of the Blasius prob- 
lem (7 = 0) can be estimated from the correlation in ref. (71 : 

Nu,,!‘Re’, = 0.3386Pr’ ‘, 

(0.0526+0.1121 Pr”+Pr)“‘. (19) 

The maximum error ofthis correlation does not exceed I .4X 
for 0.001 < Pr < CL. While Nus/(oRe,) ’ ‘for the special case 
of the Sakiadis problem (;, = 1) can be predicted by the 
present correlation equation 

Nu,:Re;,’ = 9.5642P,_’ ’ 

(0.4621+0.1395P~’ ‘+Pr)’ -. (30) 

The maximum error of this correlation is less than 1% fol 
0.01 < Pr d 10000. 

Appropriate values of the exponent II in the correlation 
equations (27) and (28) for ditrerent Pr are presented in 
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INTRODUCTION the other hand, (Nu)<~ undergoes spatial oscillations before 

SKONDAKY flow in coiled tubes, generated as a result of tube settling down to a fully developed value. Numerical cal- 

curvature, significantly increases heat transfer as compared culations of this phenomenon have been carried out by Dra- 

to flow in straight tubes. In straight tubes the peripherally vid et ul. [l], Tarbell and Samuels [2], Patankar CI crl. [3]. 

averaged Nusselt number, (Nu)+, is a maximum at the tube Akiyama and Cheng [4] and Janssen and Hoogendoorn [5]. 

inlet, decreases monotonically in the downstream direction. There is also some experimental evidence in the observed 

and asymptotes to a fully developed value. In coiled tubes on spatial wall temperature oscillations reported by Dravid (‘I 
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NOMENCLATURE 

fzIt? 
tube radius Z dimensionless axial coordinate 
Dean number, I&,/@/R) %l” z at minimum Nusselt number 

Nu Nusselt number based on tube diameter %a, z at maximum Nusselt number 
PC? Peclet number, Re Pr =, dimensionless entrance length. 
Pr Prandtl number 
R coil radius Greek symbols 
1 dimensionless radial coordinate 6 radius ratio, a/R 
RC? Reynoids number based on tube diameter 4 thickness of thermal boundary layer 
T dimensionless fluid temperature, E eccentricity 

(T* - Z,,)l(%,,- %I,) 4 angular coordinate. 
T* dimensional fluid temperature 
U, D, w dimensional radial, angular and axial velocity Other symbols 

components ( )m average over angular coordinate 4. 

al. [I]. However, the local increase in (Nu), is as yet unex- 
plained. It is our purpose to clarify the mechanism respon- 
sible for the variation in the entrance Nusselt number and to 
present correlations for characteristic distances involved and 
Nusselt numbers. 

We consider steady. laminar, constant property flow of a 
Newtonian fluid in loosely coiled tubes of circular cross- 
section with negligible viscous dissipation. The flow is con- 
sidered thermally developing but hydrodynamically fully 
developed. Inlet temperature is uniform and the wall is at a 
constant but different temperature. An (r, 4, z) coordinate 
system is employed where z is distance along the axis of the 
tube measured from the inlet, and (r, 4) are polar coordinates 
at that z section. The characteristic length and velocity used 
for nondimensionalization are tube radius and average axial 
velocity respectively. 

The governing equations are parabolized by neglecting 
axial gradient terms in the momentum and energy equations. 
A finite-volume numerical scheme is used to solve the equa- 
tions. The code is validated by comparing calculated friction 
factors and Nusselt numbers against known theoretical and 
experimental results [C’S]. Computed (Nu), in the thermal 
entrance region is shown in Fig. 1 for various Reynolds 
numbers, Re, and given values of Prandtl number, Pr, and 
radius ratio, 6. The oscillatory behavior of (Nu), in the 
entrance region is evident in these results. There are four 
regions, marked 14, that can be identified in the figure. 

Detailed numerical results show that a uniform tem- 
perature field at the inlet is initially cooled at the wall almost 
axisymmetrically such that a thin thermal boundary layer 
develops around a hot zone in the middle of the tube. This 

is region 1 where the temperature field is similar to that in a 
straight tube. In a straight tube, however, the thermal bound- 
ary layer would continue to grow axisymmetrically down- 
stream with the Nusselt number decreasing monotonically. 
For a coiled tube, secondary flow pushes the hot fluid away 
from the center and towards the outer wall of the tube. This 
happens in region 2 as the computed isotherms shown in Fig. 
2 indicate. Loss of axisymmetry of the isotherms leads to an 
increase in Nusselt number. In physical terms this can be 
related to heat conduction between two eccentric cylinders 
kept at different temperatures (see, for example, [7]). As the 
eccentricity is increased, there is some variation of local heat 
transfer around the periphery; but for small eccentricities 
the average Nusselt number increases as the square of the 
eccentricity. In coiled tubes there is also a circumferential 
variation in local Nusselt number, while the average (Nu), 
is increased due to eccentricity of the isotherms. The axial 
distance over which increase in Nusselt number occurs in 
region 2 is the same distance over which the isotherms of the 
hot core are observed to move outwards. We shall use these 
physical arguments to develop proper scalings for charac- 
teristic lengths and average Nusselt numbers for the first two 
regions. 

NUSSELT NUMBER AND ENTRANCE LENGTH 

The four regions in Fig. 1 are governed by different bal- 
ances between advection and transverse diffusion. For pur- 
poses of scaling we will utilize the fully developed flow field 
of Mori and Nakayama [g], which is valid in the limit of 
small curvature and large Dean number, De = Re6”2. The 
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FIG. I. Peripherally averaged Nusselt numbers in the thermal entrance region, Pr = 1, S = 0.1. 
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FIG. 2. Isotherms in the transverse plane for (a) RV = 750. 

ii = 0. I at z = 5, (b) R~J = 750. ii = 0.1 at I = 15. 

dimenslonless velocity components scale ifs ~1 - ~5’ ’ Kc ’ ‘. 
I’ - ii’ ‘. II‘ - O(l), where u is the radial velocity of the core 
llow in the cross-sectional plane, 1’ the azimuthal velocity in 
the boundary layer. and II’ the mean axial velocity. Axial 
bclocity in the boundary layer close to the tube wall. I! h,. 
~C;IICS 3s li’ /,, - (I --!.)(I +cos<i,,nc* 2 

Rqiorr I 
For Pcclet number f’e = Rv Pr >> I, the temperature licld 

is everywhere uniform immediately following entry cxccpt 
close to the tube wall where a thermal boundary layer 
develops. In this region. axial advection balances radial 
diffusion so that 

From this WC get an estimation of the thermal boundary 
layer thickness 

valid for Pr around unity. The local Nusselt number is l/d,,, 
and its average over 4 is given by 

For a short distance near the entrance. Nuaclt number 
variation with axial distance shows an enhancement of I)<’ ” 
as compared to that in straight tubes. This agrees with results 
reported by D-avid (‘I (I/. [I]. 

The second region begins when the thermal boundary laya 
thickness is of the same order as the eccentricity of the 
Isotherms. This happens at I = z,,,,, which corresponds to the 
lirst minimum in the curves in Fig. I. The displacement of :: 
particle imtially located at the center of the inlet section i\ 
I: - zii’ 1 RC, ’ 2. which gives an estimate of the eccentricity of 
the isotherms. Equating this to 6,,, we get r,,,,,, - ii ’ ’ Pr ’ ‘. 
Thcrc is also a weak Reynolds numhcr dependence of z,,;,,, 
due perhaps to the neglected higher order terms in our scaling 
arguments. The following correlation is ohtained from 
numerical d,tt,t ‘ ‘ 

~,,,,t, 7: 3.32+0.204Rr’ ‘6 ’ Pr ’ ‘. !J! 
Compar~aon hctween this and numcl-ical cotnputations 01 
z,,,,,, is shown in Fig. 3 for a variety of flow and geometrical 
parameters. 

For I ‘;_ z,,,,,,. radial advection affects 1 he axial gro\+th ol 
the thermal boundary layer. Secondary flow increases the 
thermal boundary layer thickness (5, on one side and 
decreases it on the other. To leading order we can set 
0, r ;i,,>( 1 +~:cos 4). Since the local Nussclt number is I :d,. 
WC can obtain (,Yu),~ by averaging over 4. To O(C’). \ve get 

which reduces to equation (3) I’or small ; and concentric 
isotherms. 

The order of magnitude &mates for regions I and \ 
suggest that for small z. correlations can he obtained b) 
considering (Nu),~,~’ ’ De ’ ’ PC ’ ’ as ;L function of ~6’ ’ 
Re ’ ‘, Thus from numerical data WC get 

/ h PC‘ ’ ’ 

i,i 

() ? 
( NLl),,. := O.hhDc I +5.74- \ 

: R(, j 

for 0.07 C zii’ ’ Kc ’ ’ < 0.3. (hl 

But for larger ; the thermal houndar) laker thickness estl- 
mate and the small i: assumption are not valid. The numerical 
data correlate with 

(\‘I/),,, = /0.X6+ I.033 ’ Rr, ’ : 

I’or 0.3 c :ii’ 4 ,Q, ’ z < I. 17) 

I-:igurc 4 shows these correlations comp;trcd to numericCLl 
data. 

Equation (7) hccomes invahd for i: = r<)’ ’ Rr ’ ’ of ordcl 
one when the hot core reaches the wall. lsothcrms obtained 
numerically show that the transverse motion of the hot-fluid 
core is retarded at a radial location corresponding to j: n 0.X 
due to the finite size of the core. This part of the (NLI),;, vs I 
data in Fig. I can he made to collapse on replotting it as 
( IVU),,, vs zci ’ + Kc I’?. The Nusselt number begins to decrcasc 

again at .:,,,,,A .’ ‘RF ’ ’ z 0.85. Thus r,,l,l, is approximately 
the axial distance required for fluid to move from the tube 
center to the wall. 

The entrance length z, IS defined as the distance to the 
onset of the fully developed region 4. It is found to hc 
approximately twice :m.l*. This distance corresponds to a 
fluid particle traversing the diametral distance from wall to 
wall along the plane of curvature. Actually, numerical results 
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q 750 0.5 0.1 = 1250 1.0 0.1 0 750 0.45 0.1 

. 750 1.0 0.1 0 1000 0.7 0.1 . 750 0.25 0.1 

0 500 1.0 0.1 0 1000 0.3 0.1 A 1250 0.4 0.1 

1250 0.35 0.1 

0 500 1.0 0.05 h 1000 0.35 0.1 0 1250 0.45 0.1 

-Eq. (4) 

/A 1250 0.5 0.1 10 1000 0.25 0.1 ID 1250 0.30 0.1 1 

. 1000 0.2 0.1 q 750 0.4 0.1 4 750 0.30 0.1 

0 1000 1.0 0.1 . 750 0.35 0.1 + 750 0.70 0.1 

0 10 20 30 40 
l/4 -l/2 -l/Z 

Re 6 Pr 

FIG. 3. Location of minimum Nusselt number. 

indicate that this entrance length is a function of the Prandtl 
number also. For fluids with Pr > 1, the Nusselt number 
curve exhibits more than one oscillation corresponding to 
the number of transverse circulations required before the 
fully developed value is attained. The estimates provided 
here are expected to hold only for Pr around unity. 

CONCLUSIONS 

We have investigated the physical reasons for non-mono- 
tonic behavior of the peripherally averaged Nusselt number 
near the entrance of a coiled tube at high Peclet numbers. 
Four Nusselt number regions are evident. In region 1, heat 
transfer is dominated by thermal diffusion from the wall. In 
region 2 secondary flow in the transverse section distorts the 
axisymmetric development of the thermal boundary layer at 
the wall and increases the Nusselt number. Proper scaling 

provides estimates of locations at which the Nusselt number 
shows minima and maxima, as well as Nusselt number cor- 
relations for regions 1 and 2. When the hot core reaches 
the wall and begins to move inwards, the Nusselt number 
decreases again and approaches an asymptotic value down- 
stream. This is in regions 3 and 4 which have not been 
modeled in detail. 
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Effect of wall conduction on melting in an enclosure heated at constant rate 

Yuwm ZHANG and ZHONWJ 031:~ 
Department of Power Machinery Engineering, Xi’an Jiaotong University, Xi’an 71004Y. <‘htna 

( Rec~c~iwrl 31 Mq I99 3 <IIIL/ ,I? //,rtri /orr,t X 3~11, 1903) 

1. INTRODUCTION 

SOLIU~ LIQUIII phase change phcnomcna exist widely in 
nature and industrial processes such as freezing of water 
and melting ofice, thermal energy storage, casting and metal- 
lurgical process. cryogenic preservation of blood and bio- 
materials, etc. Many typical applications of heat transfer in 
phase change involve convection in the liquid phase [l]. 
Recently. boundary layer theory has been adopted to solve 
the process of natural convection dominated melting. For 
example, the analytical solution for the melting process in 
a rectangular enclosure isothermally heated from one of its 
vertical walls was obtained by Bejan [2]. 

A series of laboratory experimental results and a compact 
boundary layer analysis were reported by Zhang and Bejan 
131. In their experiments, the wall heated at constant rate is 
made of aluminum and heated by eight uniformly spaced 
strip heaters. The temperature distribution along the two 
differentially heated vertical walls was measured by means 
of thermocouples positioned at four altitudes in the vertical 
mid-plane of the apparatus. and one of their typical mea 
surcd wall temperatures is quoted in Fig. I. In their theor- 
etical analysis, the longitudinal conduction along the heated 

wall was not taken mto account. this led to the lOOi>,, ovct-- 
prediction of the temperature gradient along the heated wall 
in the convection regime as illustrated in Fig. 4. 

2. PHYSICAL MODEL AND MATHEMATICAL 
FORMULATION 

The physical model adopted is shown as Fig. 2. The heated 
wall is made of aluminum with thickness II‘. The wall tem- 
pcraturc is uniform as indicated in ref. (31 and rises linearly 
with time. which corresponds to the melting regime that is 
ruled by pure conduction ; and then reaches a plateau in the 
convection melting regime. Quasi-steady state is said to be 
reached after the wall temperatures remain unchanged. all 
the heat supplied then is used to melt the solid phase change 
material (n-octadecane was used in ref. [3]). We assume that 
quasi-steady state is reached ; the initial temperature of the 
solid phase in the enclosure is uniform and equal to the 
melting point r,,,, i.e. no subcooling exists. The equations of 
the cold boundary layer. warm boundary layer and the core 
region and their corresponding boundary conditions were 
reported by Zhanp and Bcjan as follows 13. 31. 
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FIG. I. The history of the temperature distrtbutton along the heated plate [3] 


